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Abstract In this paper we re-examine the commonly accepted meaning of the
two kinetic constants characterizing any enzymatic reaction, according to Michaelis-
Menten kinetics. Expanding in terms of exponentials the solutions of the ODEs govern-
ing the reaction, we determine a new constant, which corrects some misinterpretations
of current biochemical literature.

Keywords Michaelis-Menten kinetics · Quasi-steady state approximations ·
Asymptotic expansions

1 Introduction

The question addressed in the title of this paper is not merely a rethoric one. Our
answer, of course, is definitely yes: we do think that there is still a lot of room
in this field. Formulated more than one century ago, the Michaelis-Menten-Briggs-
Haldane approximation, or standard quasi-steady state approximation (sQSSA) [7,24,
33], still represents a milestone in the mathematical modeling of enzymatic reactions.
Nevertheless, the hypothesis of quasi-steady state is crucial for the interpretation of
the reaction and must be handled with much care. It is based on the assumption that
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the complex can be considered “substantially” constant, but this statement has led
to many misinterpretations of the model. In fact, as Heineken et al. showed in [15],
the correct mathematical interpretation of the quasi-steady state assumption is that
when we expand asymptotically the solutions of the ODEs governing the process with
respect to an appropriate parameter, the sQSSA is the zero order approximation of the
solution. As already observed by Briggs and Haldane by a chemical point of view,
when the parameter of the expansion is sufficiently small this approximation is valid.
Heineken et al. used the parameter given by the ratio of the initial concentrations of
enzyme E and substrate S, obtaining the well-known chemical requirement.

In 1987 Fraser [13] pointed out that, geometrically speaking, the steady state
assumption for chemical reactions is an approximation in the phase space to the slow
manifold, i.e., the singular trajectory which strongly attracts all fast transient flow.
He also described an iterative scheme to approximate this singular trajectory without
any restrictions on the rate constants of the system. The same arguments were applied
to the Michaelis-Menten mechanism by Calder and Siegel [8]. In 1988 Segel [32]
and in 1989 Segel and Slemrod [33] obtained the Michaelis-Menten approximation
expanding the solutions in terms of a new parameter, including the Michaelis constant
and showing that the sQSSA is valid in a wider range of parameters than the one
supposed before. However it is well known that while in vitro the condition on the
concentrations can be easily fulfilled, in vivo it is not always respected [1,34–36], in
particular when the reaction is not isolated but is part of complex reaction networks.
This means that, though very useful, this approximation cannot always be applied.

Michaelis-Menten kinetics has recently become one of the most important tools in
the field of Systems Biology and in particular of mathematical modeling of intracel-
lular enzyme reactions, but in most literature any apriori analysis of the applicability
of sQSSA is absent, even in very complex reaction networks. This fact has led to sev-
eral problems concerning the study of particular phenomena, like oscillations [12,28],
bistability [10], ultrasensitivity [26] or Reverse Engineering [29]. Following [20],
recent papers [2,6,10,11,22,26–28,38–40] have introduced and explored a new
approximation, called total quasi-steady state approximation (tQSSA), which has been
shown to be always roughly valid in the case of an isolated reaction. Nevertheless,
since it is in any case an approximation, also the tQSSA can dramatically fail, as
shown in [28], in more complex mechanisms, involving more than one reaction, but
it is doubtless that it is valid in a much wider range of parameter than the sQSSA
[10,27–29,31].

One of the main problems of the mathematical treatment of the sQSSA is the misin-
terpretation of the hypothesis that the complex time concentration has zero derivative.
Many papers and even monographies tend to indicate, probably for the sake of sim-
plicity, the “substantial” equilibrium as a real equilibrium [14,21,30,42], which is
obviously not true; in this case any simplification can be definitely misleading. As
observed in [15], p. 97, this use of the equations seems scandalous to any mathemati-
cians and can bring to results which are absolutely inconsistent and false. In this work
we want to re-examine some mathematical aspects of Michaelis-Menten reaction and
of the sQSSA, trying to clarify some aspects of the enzyme reactions; in particular we
discuss the biochemical and mathematical meaning of the tQSSA, comparing it with
the sQSSA, then we analyse the consequences of the misuse of the sQSSA, recon-
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sidering the meaning of the two kinetic constants Vmax and KM ; finally we introduce
an expansion in terms of exponentials, which is valid for every choice of the param-
eters and enzyme initial concentrations; this expansion is the most appropriate to
approximate the asymptotic behavior of the solution for large values of t , in absence
of product degradation; moreover we use it to solve a serious incoherence present in
literature, related to the biochemical interpretation of the constant KM .

2 Notations, definitions and main known results

The model of biochemical reactions was set forth by Henri [16–18] and Michaelis and
Menten [24] and further developed by Briggs and Haldane [7]. This formulation con-
siders a reaction where a substrate S binds an enzyme E reversibly to form a complex
C . The complex can then decay irreversibly to a product P and the enzyme, which is
then free to bind another molecule of the substrate. This process is summarized in the
scheme

E + S
a−→←−
d

C
k−→ E + P, (1)

where a, d and k are kinetic parameters (supposed constant) associated with the reac-
tion rates: a is the second order rate constant of enzyme-substrate association; d is the
rate constant of dissociation of the complex; k is the catalysis rate constant. Following
the mass action principle, which states that the concentration rates are proportional to
the reactant concentrations, the formulation leads to an ODE for each complex and
substrate involved. We refer to this as the full system. From now on we will indicate
with the same symbols the names of the enzymes and their concentrations. The ODEs
describing (1) are

d S

dt
= −a(ET − C)S + d C,

dC

dt
= a(ET − C)S − (d + k)C, (2)

with initial conditions

S(0) = ST , C(0) = 0, (3)

and conservation laws

E + C = ET , S + C + P = ST . (4)

Here ET is the total enzyme concentration assumed to be free at time t = 0. Also
the total substrate concentration, ST , is free at t = 0. This is called the Michaelis-
Menten (MM) kinetics [3,24]. Let us observe that (2)–(4) asimptotically admits only
the trivial solution given by C = S = 0, P = ST and E = ET . This means that all
the substrate eventually becomes product due to the irreversibility, while the enzyme
eventually is free and the complex concentration tends to zero. Assuming that the
complex concentration is approximately constant after a short transient phase leads
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to the usual Michaelis-Menten (MM) approximation, or standard quasi-steady state
approximation (sQSSA): we have an ODE for the substrate while the complex is
assumed to be in a quasi-steady state (i. e., dC

dt ≈ 0):

C ∼= ET · S
KM + S

,
d S

dt
∼= −kC ∼= − Vmax S

KM + S
, S(0) = ST , (5)

where

Vmax = k ET , KM = d + k

a
. (6)

and KM is the Michaelis constant. Applying a quasi-steady approximation reduces
not only the dimensionality of the system, passing from two equations (full system)
to one (MM approximation or sQSSA). It reduces also its stiffness and thus speeds
up numerical simulations greatly, especially for large networks as found in vivo. It
allows also a theoretical investigation of the system which cannot be obtained with
the numerical integration of the full system. Moreover, the kinetic constants in (1) are
usually not known, whereas finding the kinetic parameters for the MM approximation
is a standard in vitro procedure in biochemistry. See e.g., [3] for a general introduction
to this approach. We stress here that this is an approximation to the full system, and
that it is valid only under suitable hypotheses, e.g., when the enzyme concentration is
much lower than either the substrate concentration or the Michaelis constant KM , i.e.
(see, e.g., [33])

εM M := ET

ST + KM
� 1 (7)

This condition is usually fulfilled for in vitro experiments, but often breaks down
in vivo [1,34–36]. We refer to [31] for a nice, general review of the kinetics and
approximations of (1). It is useful to quote also the recent papers [10,12,25,28,41]
which discuss the applicability of the sQSSA. In order to solve this problem, Laidler
[20], discussing the mathematical theory of the transient phase, found expressions for
the behavior of P in the quasi-steady state and found several sufficient conditions
for the applicability of the approximations. These conditions were much more gen-
eral than ET

ST
� 1. The importance of Laidler’s results can be understood comparing

his approach to a recent one, based on the total quasi-steady state approximation
(tQSSA). It was introduced by Borghans et al. [6] and refined by Tzafriri [38] for
isolated reactions. It arises introducing the total substrate

S = S + C, (8)

and assuming that the complex is in a quasi-steady state as for the sQSSA. Reaction
(1) then gives the tQSSA [6,20]:

d S

dt
∼= −k C−(S), S(0) = ST , (9)
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where

C−(S) = (ET + KM + S)−
√

(ET + KM + S)2 − 4ET S

2
. (10)

Numerical integration of (9) gives the time behavior of S and then (8) and (10) give
the corresponding C and S. Tzafriri [38] showed that the tQSSA (9) is valid whenever

εt QSS A := K

2ST

(
ET + KM + ST√

(ET + KM + ST )2 − 4ET ST

− 1

)

� 1, (11)

(where K = k
a ), and that this is at least roughly valid for any sets of parameters, in

the sense that εt QSS A ≤ K
4KM
≤ 1

4 . This means that, for any combination of param-
eters and initial conditions, (9) gives a decent approximation to the full system (2).
The parameter K is known as the Van Slyke-Cullen constant. The dissociation con-
stant K D = d

a [3] is related to the previous kinetic constants by the simple formula
K D = KM − K . Let us remark that, in recent literature, the sQSSA is applied to com-
plex enzyme reaction networks, like, e.g., the MAPK cascade, without any a priori
analysis on its applicability, setting to zero not only the derivatives of the complex con-
centrations, but also, surprisingly, the complex concentrations themselves (see, e.g.,
[9,19,23]). This produces serious inconsistencies with experimental observations and
has resulted in the discovery of the so-called “substrate sequestration” hypothesis
[4,5], which states that the enzyme can sequester a significant amount of substrate by
binding to it, making this sequestered fraction of the substrate no longer accessible to
other kinases. The importance of the choice of S̄ as one of the system variables lies in
the fact that substrate sequestration is naturally included in the total substrate. Indeed,
the latter takes into account both the free and the “sequestered” substrate.

3 Use and misuse of the standard Quasi-Steady State Approximation (sQSSA)

The roles of Vmax , the maximal reaction velocity, and KM , the Michaelis constant,
become essential when characterizing biochemical reactions in vitro as well as in
vivo. Moreover, the description of cooperative reactions, inhibition and many other
biochemical processes have up to now exploited the fundamental ideas of the MM
scheme, i.e., the sQSSA and the parameters Vmax and KM (see, e.g., [3]). However,
these approximations cannot be expected to be valid in vivo.

The dependence of the product velocity

v := d P

dt
= kC (12)

on the concentration of S is based on the a priori (and not always true) assumption
that the sQSSA is valid. In this case

v = kC ∼= Vmax · S
KM + S

. (13)
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Consequently Vmax is usually intended as the limit of the “initial velocity” for the S
concentration tending to infinity and KM as the value of S such that

v(S = KM ) = Vmax

2
. (14)

Since the tQSSA is much more appropriate than the sQSSA, we can use formula (10)
and very simple algebra to define in a more appropriate way KM (if ST > KM ): (i)
when the value of the total substrate is equal to S = KM + ET

2 , then the rate of P is

equal to Vmax
2 :

v

(
S = KM + ET

2

)
= Vmax

2
(15)

This result can also be found in [37]. Let us remark, by the way, that if we used the
Tzafriri approximating formula, we would obtain the following definition:
(ii) when the value of the total substrate is equal to S = KM + ET , then the velocity
of P is equal to Vmax

2 :

v
(
S = KM + ET

) = Vmax

2
(16)

Then the estimate given by (16) becomes largely incorrect for high values of ET .

4 The equilibrium constant revisited

Though the sQSSA is based on the approximation dC
dt
∼= 0, several biochemistry text-

books (see e.g., [14,21,30,42]), in order to simplify the mathematics, consider the
approximation as a true equality, leading to a misinterpretation of the QSSA. As a
consequence, the Michaelis constant is determined by equating to zero the right hand
side of the second equation of (2) [14,30,42], obtaining

KM = E · S
C
= (ET − C) · S

C
. (17)

Actually, the derivative of C is equal to zero only at time t = tmax , when C reaches
its maximum value. Consequently we cannot declare that the right hand side in (17)
remains constant. On the other hand, we could interpret KM as the equilibrium value
for E ·S

C , reached for large t (supposing that no degradation, product inhibition or back
reaction phenomena are involved), in the same way as the dissociation constant K D

is interpreted in the original Michaelis-Menten reaction, where k = 0 [30]. Actually,
while this last reaction, which is completely reversible, reaches a steady-state where
both S and C are different from zero, in reaction (1), as remarked above, S and C
tend to zero and consequently we cannot use (17), which gives an undefined ratio, for
t → ∞. Thus the equality KM = E ·S

C is valid for every reaction only at t = tmax .
We can however try to solve the indetermination of the ratio for t → ∞ in the fol-
lowing way. After the transient phase, all the reactants seem to follow asymptotically
an exponential behavior, with negative exponent. If we suppose that the asymptotic
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decay of C is proportional to e−αt , for some α, formula (12) implies that also ST − P
will be asymptotically proportional to e−αt . By means of the conservation laws (4) we
can conclude that also S and ET − E will follow the same asymptotic behavior as C .
Thus let us expand S and C in powers of e−αt : we have

S(t) = S0 + S1 e−αt + S2 e−2αt + o(e−2αt ) (18)

C(t) = C0 + C1 e−αt + C2 e−2αt + o(e−2αt ) (19)

After some computations, we get then

Sas(t) ∼= S1 e−αt (20)

Cas(t) ∼= α

k − α
S1 e−αt (21)

where

α = a

2
(KM + ET )

[

1−
√

1− 4k ET

a(KM + ET )2

]

(22)

There is still an unknown parameter, S1, which could be estimated from experi-
mental data via a least-squares procedure.

We are now in position to state the main results of this section.

Theorem 4.1 For t →∞
E S

C
(t) ∼= Eas Sas

Cas
(t)→

(
k − α

α

)
ET =: KW (23)

The constant KW , here introduced for the first time, gives the exact asymptotic value
of the ratio E S

C and, in contrast with biochemical literature [14,30,21,42], in general
is different from KM . This result is clearly illustrated in Figs. 1, 2, and 3, where we

Fig. 1 Plot of E S
C for a = 1,

k = 0.9, d = 0.1,
ST = 100, ET = 0.55. Solid
line numerical solution of the
full system, dashed KM ,
dashed-dotted KW , dotted K D .
Parameters and initial conditions
were chosen to give

KW = KM+K D
2
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Fig. 2 a Plot and b zoom of E S
C for a = 1, k = 0.9, d = 0.1, ST = 100, ET = 0.04. Solid line numerical

solution of the full system, dashed KM , dashed-dotted KW , dotted K D
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Fig. 3 a Plot and b zoom of E S
C for a = 1, k = 0.9, d = 0.1, ST = 100, ET = 89. Solid line numerical

solution of the full system, dashed KM , dashed-dotted KW , dotted K D

have plotted the time course of the ratio E S
C , where the values E, S, C are obtained

by the numerical integration of system (2)–(4). Finally, let us state some important
properties of KW .

Theorem 4.2 For any admissible choice of the kinetic parameters and the initial
conditions, the following inequalities hold:

K D ≤ KW ≤ KM . (24)

Varying appropriately the parameter values, we can obtain for KW every value
between K D and KM . In particular,
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Theorem 4.3 For any admissible choice of the kinetic parameters and for any K̄ ∈
(K D , KM ), there exists ĒT such that E S

C → K̄ when t →∞.
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